Campus News

Study: Northern Eurasian snowpack could be important predictor of winter weather in U.S.

Every winter, weather forecasters talk about the snow cover in the northern U.S. and into Canada as a factor in how deep the deep-freeze will be in the states.
A new study by UGA researchers indicates those forecasters may be looking, at least partially, in the wrong place.

Snow piles in Siberia
It turns out that snow piling up over a band of frozen tundra from Siberia to far-northern Europe may have as much effect on the climate of the U.S. as the much-better-known El Niño and La Niña.

The work, published in the International Journal of Climatology, reports that to understand how cold (or warm) the winter season will be in the U.S., researchers and weather forecasters also should take a look at snowpack in northern Eurasia laid down the previous October and November.

“To date, there had been no thorough examination of how snow cover from various regions of Eurasia influences North American winter temperatures,” said climatologist Thomas Mote of the department of geography and leader of the research. “The goal of this research was to determine whether there is a significant relationship ­between autumn snow extent in specific regions of Eurasia and temperatures across North America during the subsequent winter.”

Co-author of the paper was Emily Kutney, a former graduate student in Mote’s lab who has since earned her master’s degree and left UGA.

While other scientists have postulated that snow cover on the Eurasian landmass has a strong effect on winters in North America, this new study is the first to narrow down the location of the area that causes the most direct effect on U.S. winters—an area in northwest Eurasia that includes part of Siberia—though the entire effective area extends as far west as northern Scandinavia.

“One difficulty in comparing previous studies is that they have used multiple definitions of Eurasian snow cover,” said Mote. “Our work looked at the role of various key areas of Eurasian snow cover on atmospheric circulation, including the systems called the ­Arctic Oscillation and the Pacific/North American teleconnection.”

Seasonal climate outlooks
The findings have new significance for seasonal climate outlooks, which predict whether upcoming seasons will be colder, warmer, wetter or drier than normal. Years with extensive autumn snow in northwest Eurasia were associated with subsequent winter temperatures as much as seven degrees (Fahrenheit) lower near the center of North America. This difference is roughly the same as a one-month shift in climate.

Such information can be crucial for everything from agricultural to daily life in areas that have brutal winters.

Even more complexity enters the system of interrelated climate phenomena when looking at the possibility that sea ice in the Atlantic and Arctic oceans might affect Eurasian snow cover and thus winters in North America.

“It’s interesting, because it implies to us that the potential impact of this new idea could be as large or larger than El Niño and La Niña events,” said Mote.

The new study is more about seasonal climate predictions than short-term modeling for weather.

Mote also led a team that reported in 2008 a dramatic rise in the rate of melt in the ice sheet of Greenland. He and colleagues found that it was 60 percent higher in 2007 than ever before recorded. Mote used a nearly 40-year record of satellite data to ­discover the dramatic melting.

Mote also is director of UGA’s ­Climatology Research Laboratory.