Campus News

Researchers publish genome sequence for cotton

UGA researchers, working with representatives from most of the world’s major cotton-producing countries, have led the description of the first “gold-standard” genome sequence for cotton.

In a recent edition of the journal Nature, an international consortium of researchers from 31 institutions presented a high-quality draft assembly of the simplest cotton genome-known scientifically as Gossypium raimondii.

Additionally, the team compared the genome from this ancestral species indigenous to the Americas to several other sets of cotton data contributed by the U.S. Department of Agriculture. The results have allowed the researchers to trace the evolution of cotton over millions of years from wild varieties to the domesticated species now associated with textile production.

The effort to develop a gold-standard sequence of the cotton genome was jump-started in 2007 when the U. S. Department of Energy Joint Genome Institute Community Sequencing Program approved a proposal from UGA Regents Professor Andrew Paterson. Among the 74 authors of the paper, 18 were from UGA, the largest among the 31 institutions involved.

“My group set out toward this goal in 1991, and this achievement is not an ending but a beginning,” Paterson said. “We are enthusiastically pursuing next steps using the genome sequence to better understand cotton biology and identify important genes that will improve sustainability of cotton production and increase its role in the more bio-based economy of the future.”

The DOE hopes to maximize cotton’s potential as a biofuel stock while developing more efficient and sustainable crop varieties for the fiber’s traditional uses.

On the farm, the identification of key cotton genes and their importance will provide data crucial to increasing cotton production, quality and sustainability. In the lab, the comparison of an elite cotton cultivar to its wild ancestors provides new insights into how a polyploid-a hybrid of more than one type of cotton-becomes more than the sum of its ancestors.